Latest Higgs results from ATLAS

Rustem Ospanov for the ATLAS collaboration

University of Pennsylvania

October 5, 2012

- Overview
- ► ATLAS experiment
- H → WW
- ► Combined results
- Higgs properties
- ▶ Future outlook

The Standard Model

- The Standard Model is a quantum field theory of point-like fermions with interactions mediated by vector gauge bosons
- A very successful description of high energy particle interactions
- ▶ $SU(3) \times SU(2) \times U(1)$ gauge theory
- SU(2) × U(1) is spontaneously broken by a scalar field with non-zero vacuum expectation value
- Predicts a neutral scalar particle: the Higgs boson
- Mass of the Higgs boson is a free parameter in the SM

Searching for the Higgs boson is one of the highlights of the LHC physics program

The Standard Model at LHC

- Precise theory calculations and experimental measurements to test the SM predictions
- Good training for complex Higgs final states (and other searches)

The discovery of a new mass resonance at LHC: $m \approx 125-126~GeV$

Higgs production

- ► Gluon-gluon fusion (ggF)
 - ► POWHEG+PYTHIA
 - ► p_T with HqT v2.0
- Vector boson fusion (VBF)
 - ► POWHEG+PYTHIA
- Associated production:
 - ► WH/ZH
 - ► ttH
 - ► PYTHIA
- Mass line shape uncertainty:
 - $ightharpoonup (150\%) imes (\frac{m_H}{TeV})^3$

	ggF	VBF	WH/ZH	t₹H
QCD scale	+7% -8%	±1%	$\pm 1\%$	+4% - 9%
$PDF+\alpha_S$	±8%	±4%	±4%	±8%

Higgs decays

- Higgs couplings depend on particle mass
- WW and ZZ dominate when kinematically allowed
- Many competing channels for m_H < 160 GeV observable at LHC
- ▶ BR for $m_H = 125~GeV$: $\Gamma_H = 4.1~MeV \pm 4\%$ $B(H \to \gamma \gamma) = 2.3 \times 10^{-3} \pm 5\%$ $B(H \to Z\gamma) = 1.5 \times 10^{-3} \pm 10\%$ $B(H \to \mu\mu) = 2.2 \times 10^{-4} \pm 6\%$

Higgs decays

- Higgs couplings depend on particle mass
- WW and ZZ dominate when kinematically allowed
- Many competing channels for m_H < 160 GeV observable at LHC
- ▶ BR for $m_H = 125 \; GeV$: $\Gamma_H = 4.1 \; MeV \pm 4\%$ $B(H \rightarrow \gamma \gamma) = 2.3 \times 10^{-3} \pm 5\%$ $B(H \rightarrow Z\gamma) = 1.5 \times 10^{-3} \pm 10\%$ $B(H \rightarrow \mu \mu) = 2.2 \times 10^{-4} \pm 6\%$

Higgs decays at m_H=125GeV

Aidan Randle-Conde

More than 3000 scientists from 38 countries

A champagne toast for the discovery

2012 record instantaneous luminosity: $7.73 \times 10^{33} cm^{-2} s^{-1}$

 $Z
ightarrow \mu \mu$ with 25 vertexes

ATLAS experiment

- ▶ Recorded $\int \mathcal{L} = 15 \text{ fb}^{-1}$ at 8 TeV
- ► ATLAS is 93.7% efficient during stable LHC collisions
- ▶ Recording rate $\approx 500 \ Hz$
 - ▶ Electron $p_T > 24$ GeV: 110 Hz
 - ▶ Muons *p_T* > 24 *GeV*: 70 *Hz*
 - Di-photons p_T > 35, 25 GeV: 15 Hz

LHC peak luminosity in 2012:

- $\mathcal{L}_{peak} \approx 7.73 \times 10^{33} cm^{-2} s^{-1}$
- ▶ pp inelastic ≈ 450 MHz
- $ightharpoonup Z
 ightarrow \mu\mu pprox 6~Hz$
- ▶ $gg \rightarrow H[125 \text{ GeV}] \approx 0.17 \text{ Hz} \approx 600/\text{hour}$
- ▶ $gg \rightarrow H[125 \text{ GeV}] \rightarrow WW \rightarrow l\nu l\nu \approx 0.0018 \text{ Hz}$

- Precision silicon tracking detectors and Transition Radiation Tracker
- Electromagnetic calorimeter for electron/photon identification and energy measurement
- Hadronic calorimeter for jet energy measurement
- Hermetic design for missing transverse energy measurements
- Muon detectors with air-core toroids

Single lepton triggers

- ▶ Single isolated electron trigger with $p_T > 24 \text{ GeV}$
- Match Inner Detector track to calorimeter cluster
- ▶ Shower shapes for electron and photon id
- lacktriangle Acceptance $|\eta| < 2.5$ and efficiency 90%

- Single isolated muon trigger with p_T > 24 GeV
- Match Muon Spectrometer track to Inner Detector track
- ▶ Trigger acceptance $|\eta|$ < 2.4
- Trigger efficiency: 90% in endcap and 70% in barrel (geometric coverage of muon trigger chambers)
- ► Di-muon efficiency > 95%

Heavy flavor tagging

- ▶ Tag b-quark jets using relative long lifetime of b-hadrons: $c\tau \sim 450 \mu m$
- Construct a single (multi-variate) discriminant using impact parameter of tracks inside a jet and secondary vertexes
- ▶ A number of btagging algorithms with different working points
- ▶ MV1: b-tagging efficiency 85%, light jet tagging rate 11%
- ▶ Uncertainty varies between 5% and 18% as a function of jet p_T

$t \overline{t} o WbWb o e u \mu u + 2$ b-jets

Higgs results from ATLAS

- ▶ Combination of 15 channels with 12 channels used for low mass Higgs
- $ho \approx 100$ sub-channels

Subsequent

Decay

Higgs Boson

Decay

- ▶ Blinded searches for 2012 analyzes
- ▶ The ATLAS discovery results presented by Jianming Qian on July 9

Sub-Channels

▶ Focus on $H \to WW$ 8 TeV data with $\mathcal{L} = 5.8~fb^{-1}$ and Higgs properties measurements

Table 6: Summary of the individual channels entering the combination. The transition points between separately optimised m_H regions are indicated where applicable. In channels sensitive to associated production of the Higgs boson, V indicates a W or Z boson. The symbols \otimes and \oplus represent direct products and sums over sets of selection requirements, respectively.

m_H Range

[GeV]

f L dt

 10^{-1}

Ref

	Decay	Decay		[001]	[IO]		
			$2011 \sqrt{s} = 7 \text{ TeV}$				
	$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu2e, 4\mu\}$	110-600	4.8	[87]	
		$\ell\ell\nu\nu$	$\{ee, \mu\mu\} \otimes \{low, high pile-up\}$	200-280-600	4.7	[125]	
		$\ell\ell qq$	{b-tagged, untagged}	200-300-600	4.7	[126]	
	$H \rightarrow \gamma \gamma$	-	10 categories {p _{Tt} ⊗ η _γ ⊗ conversion} ⊕ {2-jet}	110-150	4.8	[127]	
2011	$H \to WW^{(*)}$	$\ell \nu \ell \nu$	$\{ee, e\mu/\mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\} \otimes \{\text{low}, \text{high pile-up}\}$	110-200-300-600	4.7	[106]	
		$\ell vqq'$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\}$	300-600	4.7	[128]	
	H o au au	$\tau_{\rm lep}\tau_{\rm lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, VH\}$	110-150	4.7		
		$H \rightarrow \tau \tau$		$\{e, \mu\} \otimes \{0\text{-jet}\} \otimes \{E_{\mathrm{T}}^{\mathrm{miss}} < 20 \text{ GeV}, E_{\mathrm{T}}^{\mathrm{miss}} \geq 20 \text{ GeV}\}$	110-150	4.7	[129]
		$\tau_{ m lep} au_{ m had}$	$\oplus \{e, \mu\} \otimes \{1\text{-jet}\} \oplus \{\ell\} \otimes \{2\text{-jet}\}$				
		$\tau_{\rm had} \tau_{\rm had}$	{1-jet}	110-150	4.7		
	$VH \rightarrow Vbb$	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\}$	110-130	4.6		
		$W \rightarrow \ell \nu$	$p_T^{W^-} \in \{< 50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}\$	110-130	4.7	[130]	
		$Z \rightarrow \ell \ell$	$p_{\mathrm{T}}^{Z} \in \{<50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}\$	110-130	4.7		
	$2012 \sqrt{s} = 8 \text{ TeV}$						
N	$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	110-600	5.8	[87]	
201	$H \rightarrow \gamma \gamma$	-	10 categories {p _{Tt} ⊗ η _γ ⊗ conversion} ⊕ {2-jet}	110-150	5.9	[127]	
2	$H \rightarrow WW^{(*)}$	еvµv	$\{e\mu, \mu e\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\}$	110-200	5.8	[131]	

$H \rightarrow WW \rightarrow e \nu \mu \nu$

 $m_H=125~GeV: \sigma \times BR(H \to WW \to l\nu l\nu)=22.3~pb \times 0.0106=0.24~pb$ $\approx 236~events/~fb^{-1}$ - a large production rate but difficult and diverse backgrounds

$H o WW o e \nu \mu \nu$: analysis strategy

Analysis strategy:

- $H \rightarrow WW \rightarrow 4q: 46\%$
 - large multi-jet backgrounds
- H → WW → Ivqq: 44%
 high mass channel
- $H \rightarrow WW \rightarrow l\nu l\nu$ 10%
 - ► High rate, clean final state
 - No mass peak because of ν

Irreducible background:

WW

Mis-reconstructed backgrounds:

- ightharpoonup top: $t\overline{t}$, tW, tb, tgb
- ▶ W+jets
- ► Z+jets
- Di-bosons: WZ, ZZ, Wγ^(*)

Selection:

- ► Two isolated opposite sign electron or muon (p_T > 25, 15 GeV)
- Match leptons and jets to common vertex
- Significant missing transverse energy (E^{rel}_{T,miss} > 25) not aligned with selected objects
- Separate analysis categories: (eµ) ⊗ (0-jet, 1-jet, 2-jet)
- ▶ Large Drell-Yan background for ee and $\mu\mu$ only $e\mu$ is considered

$H \rightarrow WW \rightarrow l\nu l\nu$: jet multiplicity

Split by jet multiplicity:

- ▶ 0-jet: ggF vs. SM WW $\pm 17\%$ for $\sigma_{ggF}(m_H=125~GeV)$
- ▶ 1-jet: ggF vs. SM WW and top $\pm 36\%$ for $\sigma_{ggF}(m_H=125~GeV)$
- ▶ 2-jet: VBF vs. SM WW and top $\pm 4\%$ for $\sigma_{VBF}(m_H=125~GeV)$

Main detector uncertainties:

- ▶ Jet energy scale: 2-9% as a function of jet p_T and η
- ▶ Jet energy from pileup: < 5% for jet $p_T > 25$ GeV
- ▶ B-tagging: 5 18% as a function of jet p_T

$H \rightarrow WW \rightarrow l\nu l\nu$: W+jet, WZ, ZZ, W γ backgrounds

► W+jet background:

- Jets reconstructed as electrons
- b-hadron decays to leptons
- Suppress with tight lepton isolation and particle id (PID)
- Estimate using évents with loosened selection:
 - ▶ 40% uncertainty for W+electrons
 - ▶ 60% uncertainty for W+muons
- \blacktriangleright $WZ^{(*)}$ and $Z^{(*)}Z^{(*)}$ backgrounds:
 - One or more leptons are not reconstructed
 - ▶ Estimated with simulation
- ▶ $W\gamma^{(*)}$ background:
 - Electron from photon conversion
 - Leptons from internal conversions
 - Estimated with simulation
- Same sign di-lepton validation region
 - ▶ Observed events: 182
 - Expected events:

 $216 \pm 7 \text{ (stat) } \pm 42 \text{ (syst)}$

$H \rightarrow WW \rightarrow l\nu l\nu$: top backgrounds

- ► Top backgrounds in 0-jet:
 - ► Correct for top b-jet reconstruction
 - ▶ Scale MC prediction: 1.11 ± 0.06 (stat)
 - $\sigma = 17\%$
- ► Top backgrounds in 1-jet and 2-jet:
 - Estimated from control regions that require b-jet
 - 1-jet: 1.11 ± 0.05 (stat), $\sigma = 36\%$
 - 2-jet: 1.05 ± 0.01 (stat), $\sigma = 70\%$

$H \rightarrow WW \rightarrow l\nu l\nu$: Drell-Yan background

- Drell-Yan (DY) process has no neutrinos in the final state
- Suppressed by requiring significant E_{T,miss}
- ► Pileup events deposit add energy in calorimeters giving fake *E*_{T, miss}
- ▶ Only only $e\mu$ final states are included
- ▶ $Z/\gamma^* \rightarrow \tau \tau$ plus leptonic τ decays
- ▶ 0-jet: $p_{T,II} > 30 \; GeV$
- ▶ 1-jet: $m_{\tau\tau}$ veto

 E_{rel}^{miss} =MET

If closest object within 90°, E_{rel}^{miss} =MET sin ϕ

$H \rightarrow WW \rightarrow l\nu l\nu$: SM WW background

- Largest background
- ▶ $H \rightarrow WW \rightarrow l\nu l\nu$: $\sigma \times BR = 0.237 \text{ pb}$
- $qq \rightarrow WW \rightarrow l\nu l\nu$: $\sigma \times BR = 54.4 \ pb$
 - Assuming Higgs is spin 0 particle, spin correlations for WW result in small opening angle for two charged leptons
 - ▶ $|m_{||} < 50 \text{ GeV}$
 - $|\Delta \phi_{II}| < 1.8$
- Estimate from control regions m_{II} > 80 GeV
 - 0-jet: 1.06 ± 0.06 (stat), $\sigma = 13\%$
 - 1-jet: 0.99 ± 0.15 (stat), $\sigma = 42\%$

$H \rightarrow WW \rightarrow l\nu l\nu$: SM WW background

- Largest background
- ▶ $H \rightarrow WW \rightarrow l\nu l\nu$: $\sigma \times BR = 0.237 \text{ pb}$
- $qq \rightarrow WW \rightarrow l\nu l\nu$: $\sigma \times BR = 54.4 \ pb$
 - Assuming Higgs is spin 0 particle, spin correlations for WW result in small opening angle for two charged leptons
 - ▶ $|m_{||} < 50 \text{ GeV}$
 - $|\Delta \phi_{II}| < 1.8$
- Estimate from control regions m_{II} > 80 GeV
 - 0-jet: 1.06 ± 0.06 (stat), $\sigma = 13\%$
 - 1-jet: 0.99 ± 0.15 (stat), $\sigma = 42\%$

$H \rightarrow WW \rightarrow l\nu l\nu$: signal region

- ► Table shows number of expected signal and background events and observed data events for: $0.75 \cdot m_H < m_T < m_H$ for $m_H = 125 \ GeV$
- An excess of events is observed relative the background expectation

$$m_{\mathrm{T}} = \sqrt{\left(E_{\mathrm{T}}^{\ell\ell} + E_{\mathrm{T}}^{\mathrm{miss}}\right)^{2} - \left|\mathbf{p}_{\mathrm{T}}^{\ell\ell} + \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}\right|^{2}}$$

	0-jet	1-jet	2-jet
Signal	20 ± 4	5 ± 2	0.34 ± 0.07
WW	101 ± 13	12 ± 5	0.10 ± 0.14
$WZ^{(*)}/ZZ/W\gamma^{(*)}$	12 ± 3	1.9 ± 1.1	0.10 ± 0.10
tī	8 ± 2	6 ± 2	0.15 ± 0.10
tW/tb/tqb	3.4 ± 1.5	3.7 ± 1.6	-
Z/γ^* + jets	1.9 ± 1.3	0.10 ± 0.10	-
W + jets	15 ± 7	2 ± 1	-
Total background	142 ± 16	26 ± 6	0.35 ± 0.18
Observed	185	38	0

$H \rightarrow \gamma \gamma$

 $\sigma pprox 0.05~pb$

pprox 300 signal events produced in 5.8 fb^{-1} at 8 TeV

ggF: 87% VBF: 7% W/ZH: 5%

 $m_{\gamma\gamma}^2 =$

 $2E_1E_2(1-\cos\alpha)$

$H \rightarrow \gamma \gamma$: photon identification

- Fine η granularity in the strip layer to reject π^0
- ► EM shower shape to reject fake photons from jets $\approx O(8000)$ jet rejection 85% photon efficiency
- Longitudinal segmentation to measure shower direction and to improve energy measurement

$H \rightarrow \gamma \gamma$: analysis strategy

- ▶ Two isolated photons with $p_T > 40,30$ GeV
- ▶ Search for a narrow mass peak in di-photon mass spectrum
- Requires excellent EM energy resolution
- ▶ Split events in 10 categories to optimize signal/background
- ▶ Irreducible SM backgrounds are fitted from sidebands
 - ▶ Background composition measured from data (for cross-checks)

$\gamma\gamma$	$j\gamma$	jj
$80 \pm 4\%$	$19\pm3\%$	$1.8\pm0.5\%$

$H \rightarrow \gamma \gamma$: 2-jet channel

- Exclusive 2-jet VBF category
- ► VBF topological cuts:

 - ▶ $|\Delta \eta_{jj}| > 2.8$ ▶ $m_{jj} > 400 \ GeV$ ▶ $\Delta \phi(\gamma \gamma, jj) > 2.6$
- ▶ VBF process is 70% of signal events

	N _{sig}	N _{data}
8 TeV	3.0	139
7 TeV	2.2	89

 $H \rightarrow \gamma \gamma$

- An excess of events observed at m_H = 126 GeV
- Fit $m_{\gamma\gamma}$ spectrum in each of 10 categories
- Fit signal with Crystal Ball + Gaussian
- Fit background using one of two functions:
 - ▶ 4th degree Bernstein polynomial
 - Exponential of 2nd degree polynomial
- Functions optimized to reduce potential bias and retain good statistical power using simulated events
- Weighted distribution with weight wi for category i defined as In(1 + Si/Bi)

$H \rightarrow ZZ \rightarrow 4I$

 $\sigma(\textit{m}_{\textit{H}} = 125~\textit{GeV}) \times \textit{B} \approx 3~\textit{fb}$

pprox 16 signal events produced in 5.8 ${\it fb}^{-1}$ 8 TeV

$H \rightarrow ZZ \rightarrow 4I$: analysis strategy

- ▶ Four isolated electrons or muons with $p_T > 20, 15, 10, 7 6(e \mu)$ GeV
- ▶ $50 < m_{12} < 105 \text{ GeV}, m_{34} > 17.5 50 \text{ GeV}$
- ► Search for a narrow mass resonance
- ▶ 3 event (resolution) categories: 4e, $2e2\mu$, 4μ
- ▶ Irreducible SM $ZZ^* \rightarrow 4I$ background estimated from simulation
- ▶ Reducible Z+jets and $t\bar{t}$ backgrounds estimated from data

$H \rightarrow ZZ \rightarrow 4I$: four-lepton invariant mass

- ▶ Observe an excess of events near $m_{4l} = 125 \ GeV$
- ▶ A number of selected candidate events 115 135 GeV range:

	Signal	ZZ ^(*)	Z + jets, $t\bar{t}$	Observed
4μ	2.09 ± 0.30	1.12 ± 0.05	0.13 ± 0.04	6
2e2μ/2μ2e	2.29 ± 0.33	0.80 ± 0.05	1.27 ± 0.19	5
4e	0.90 ± 0.14	0.44 ± 0.04	1.09 ± 0.20	2

Statistics tools and techniques

Likelihood function:

$$\mathcal{L}(data|\mu, \theta) =$$

Poisson $(data|\mu \cdot s(\theta) + b(\theta)) \cdot p(\tilde{\theta}|\theta)$

data - experimental observation

- $\boldsymbol{\theta}$ systematics nuisance parameters
- s number of signal events
- b number of background events
- μ signal strength
- ▶ 95% confidence limit for exclusion limits:

$$CL_s(\mu)=rac{
ho_{\mu}}{1-
ho_b}$$

Adjust μ until $CL_s=0.05$

▶ p₀ tests the background only hypothesis:

$$ilde{q}_0 = -2 extstyle In rac{\mathcal{L}(extstyle data|0,\hat{ heta}_{\mu})}{\mathcal{L}(extstyle data|\hat{\mu},\hat{ heta})}$$

 p₀ - probability that the background could reproduce (fluctuates into) the same excess of events Profile likelihood ratio:

$$ilde{q}_{\mu}=-2Inrac{\mathcal{L}(data|\mu,\hat{ heta}_{\mu})}{\mathcal{L}(data|\hat{\mu},\hat{ heta})}$$
, $0\geq\hat{\mu}\geq\mu$

 $\hat{\mu}, \hat{\theta}$ - maximize \mathcal{L} $\hat{\theta}_{\mu}$ - maximize \mathcal{L} for given μ

Combined results

- ► The SM Higgs boson is excluded at 95% CL in the mass range: 111-122 GeV and 131-559 GeV
- Clear evidence for the production of a neutral boson with a measured mass of 126.0 ± 0.4 (stat) ± 0.4 (sys) GeV
- ▶ Local significance of 5.9σ , corresponding to a background fluctuation probability of 1.7×10^{-9}
- ► Global signficance of 5.1σ for $110 \ GeV < m_H < 600 \ GeV$
- Compatible with the production and decay of the SM Higgs boson

Combined results

- ► The SM Higgs boson is excluded at 95% CL in the mass range: 111-122 GeV and 131-559 GeV
- Clear evidence for the production of a neutral boson with a measured mass of 126.0 ± 0.4 (stat) ± 0.4 (sys) GeV
- ▶ Local significance of 5.9σ , corresponding to a background fluctuation probability of 1.7×10^{-9}
- ▶ Global signficance of 5.1σ for $110 \ GeV < m_H < 600 \ GeV$
- Compatible with the production and decay of the SM Higgs boson

Higgs results

Signal strength and mass

- The observed excess corresponds to $\hat{\mu}=1.4\pm0.3$ for $m_H=126$ GeV, consistent with the SM Higgs hypothesis $\mu=1$
- ▶ The probability for a single Higgs boson-like particle to produce resonant mass peaks in the $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ channels separated by more than the observed mass difference, allowing the signal strengths to vary independently, is about 8%

Higgs production signal strength: $\mu_{VBF+VH}, \mu_{ggF+ttH}$

- ▶ m_H = 126 GeV
- $\blacktriangleright \mu_{VBF+VH}$ scale with WH/ZH couplings
- $\mu_{ggF+ttH}$ scale with ttH coupling
- ▶ Decay branching ratios cancel for this ratio: $\mu_{VBF+VH}/\mu_{ggF+ttH}$
- Model independent way to test compatibility of production mechanisms with the SM prediction

Standard Model Higgs boson

- Is the new mass resonance the Higgs boson predicted by the Standard Model?
- Experimental measurements of the Higgs properties:
 - ► Couplings: production cross-sections and branching ratios
 - Spin and CP
 - Higgs triple self coupling
 - Is there more than one mass state?
- ► Two approaches:
 - ► Test against specific theoretical models
 - Model independent searches for deviations from SM properties

Higgs coupling properties measurements: simplified framework

- ▶ LHC Higgs XS working group interim recommendations: arXiv:1209.0040
- The signals observed in the different search channels originate from a single narrow resonance with a mass of 126 GeV. The case of several, possibly overlapping, resonances in this mass region is not considered.
- ► The width of the Higgs boson with a mass of 126 GeV is assumed to be negligible:

$$\sigma \times BR(ii \rightarrow H \rightarrow ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{H}}$$

Only modifications of couplings strengths, i.e. of absolute values of couplings, are taken into account, for example:

$$(\sigma \times BR)(gg \to H \to \gamma \gamma) = \sigma_{SM}(gg \to H) \times BR_{SM}(H \to \gamma \gamma) \times \frac{\kappa_g^2 \kappa_{\gamma}^2}{\kappa_H^2}$$

- The tensor structure of the Higgs couplings is assumed to be the same as in the SM. This means that the observed state is assumed to be a CP-even scalar.
- ► Measurements of Higgs spin and CP properties require dedicated analyzes since kinematics distributions are modified under non-SM assumption

Higgs production and decay parameters

Production modes

$$\frac{\sigma_{\text{ggH}}}{\sigma_{\text{ggH}}^{\text{SM}}} = \begin{cases}
\frac{\kappa_{\text{g}}^{2}(\kappa_{\text{b}}, \kappa_{\text{t}}, m_{H})}{\kappa_{\text{gg}}^{2}} \\
\frac{\sigma_{\text{VBF}}}{\sigma_{\text{VBF}}^{\text{SM}}} = \kappa_{\text{VBF}}^{2}(\kappa_{\text{W}}, \kappa_{\text{Z}}, m_{H})
\end{cases}$$

$$\frac{\sigma_{\text{WH}}}{\sigma_{\text{WH}}^{\text{SM}}} = \kappa_{\text{W}}^{2}$$

$$\frac{\sigma_{\text{ZH}}}{\sigma_{\text{ZH}}^{\text{SM}}} = \kappa_{\text{Z}}^{2}$$

$$\frac{\sigma_{\text{ti}}}{\sigma_{\text{ti}}^{\text{SM}}} = \kappa_{\text{t}}^{2}$$

Detectable decay modes

Detectable decay modes
$$\frac{\Gamma_{WW^{(*)}}}{\Gamma_{WW^{(*)}}^{SM}} = \kappa_W^2$$

$$\frac{\Gamma_{ZZ^{(*)}}}{\Gamma_{ZZ^{(*)}}^{SM}} = \kappa_Z^2$$

$$\frac{\Gamma_{b\overline{b}}}{\Gamma_{b\overline{b}}^{SM}} = \kappa_b^2$$

$$\frac{\Gamma_{\tau^{-\tau^+}}}{\Gamma_{\tau^{-\tau^+}}^{SM}} = \kappa_\tau^2$$

$$\frac{\Gamma_{\gamma\gamma}}{\Gamma_{\gamma\gamma}^{SM}} = \begin{cases} \kappa_\gamma^2(\kappa_b, \kappa_t, \kappa_\tau, \kappa_W, m_H) \\ \kappa_\gamma^2 \end{cases}$$

$$\frac{\Gamma_{Z\gamma}}{\Gamma_{Z\gamma}^{SM}} = \begin{cases} \kappa_{(Z\gamma)}^2(\kappa_b, \kappa_t, \kappa_\tau, \kappa_W, m_H) \\ \kappa_{(Z\gamma)}^2 \end{cases}$$

Higgs decays to fermions and bosons: κ_F, κ_V

$$\kappa_V = \kappa_W = \kappa_Z$$

Assuming only SM contributions to Γ_H

No assumptions on total width

- ▶ Allow non SM contributions to Γ_H :
 - $\lambda_{FV} = \kappa_F / \kappa_V$
 - $\kappa_{VV} = \kappa_{v} \cdot \kappa_{V} / \kappa_{H}$

 $-2 \mbox{\it ln} \Lambda < 2.3 (6.0)$ correspond typically to 68% and 95% CL

Probing the W and Z couplings

-2 In $\Lambda(\lambda_{WZ})$

► Three free parameters:

$$\kappa_F = \kappa_t = \kappa_b = \kappa_\tau$$

- ► κw
- κ_Z
- $\lambda_{WZ} = \kappa_W/\kappa_Z = 1.07^{+0.35}_{-0.27}$
- ► The VBF process is parametrized as the function of κ_W and κ_Z predicted by the SM

No assumptions on total width

 $\boldsymbol{\lambda}_{WZ}$

Probing non-SM contributions

Test for non-SM contributions to $gg \to H$ and $H \to \gamma \gamma$ loops:

- ▶ Modify $gg \rightarrow H$ production: κ_g
- ▶ Modify $H \rightarrow \gamma \gamma$ decays: κ_{γ}
- ▶ Fix all other couplings to SM values: $\kappa = 1$

Assuming only SM contributions to Γ_H

No assumptions on total width

Allow Higgs decays to undetected particles:

$$\Gamma_H = \frac{\kappa_H(\kappa_i)}{(1-BR_{undetec.})} \times \Gamma_H^{SM}$$

► *BR*_{undetec.} < 0.84

(Assumed) LHC schedule

Higgs physics at a High Luminosity LHC with ATLAS

- lacktriangle Additional channels targeted for high luminosity LHC with \sim 3000 fb^{-1}
- \blacktriangleright Realistic assumptions regarding upgraded detector performance with up to \sim 140 collisions per crossing
- ▶ Direct measurement of *ttH* in di-photon channel
- lacktriangle Measurement of Higgs coupling to 2nd generation fermions via $H o \mu\mu$

- Estimates of precision for measurements of SM Higgs branching ratios with 300 fb⁻¹ and 3000 fb⁻¹
- ▶ Order 10-20% precision for ggF and VBF production in $H \rightarrow \gamma \gamma$
- Addition of associate production (ZH and WH) channels is expected to improve these results considerably
- ▶ With 300 fb^{-1} at 14 TeV the spin/CP quantum numbers of non-mixed states can be measured at 5 σ level
- ▶ With 300 fb^{-1} at 14 TeV $HH \rightarrow b\bar{b}\gamma\gamma$

ATLAS Preliminary (Simulation)

 \sqrt{s} = 14 TeV: $\int Ldt = 300 \text{ fb}^{-1}$; $\int Ldt = 3000 \text{ fb}^{-1}$

Congratulations to CERN for the fantastic LHC performance!

- Impressive performance by the ATLAS experiment in all aspects: detector design and construction, detector performance and calibration, data taking efficiency and data quality, simulation and physics results
- ► Clear evidence for the production of a neutral boson with a measured mass of 126.0 \pm 0.4 (stat) \pm 0.4 (sys) GeV
- Compatible with the production and decay of the Standard Model Higgs boson
- ► A program of precision measurements of properties of the new particle
- ► Already recorded 15 fb¹ more results in pipeline: Higgs properties, precision Standard Model measurements and searches for new physics

Thank you and stay tuned!

$H \rightarrow \gamma \gamma$: photon conversion

- ▶ Photons convert into electron and positron pairs in the tracker material
- Reconstruct as displaced Inner Detector track(s) matched to electromangetic cluster
- ▶ Measure amount of Inner Detector material with conversion vertex density
- ▶ 52% of signal events contain at least one converted photon
- ▶ Uncertainty on event migration between converted/unconverted is 4%

$H \rightarrow \gamma \gamma$: categories

$H \rightarrow \gamma \gamma$: categories

 $H \rightarrow \gamma \gamma$

$H \rightarrow ZZ \rightarrow 4I$: backgrounds

- ► Normalize ZZ^(*) from simulation
- ► Normalize reducible backgrounds from control regions
 - Z+jets background relax lepton selection cut
 - $ightharpoonup t\bar{t} e\mu$ channel
 - Z+jets background validation relax impact parameter and isolation

ATLAS Preliminary (Simulation)

$$\sqrt{s}$$
 = 14 TeV: $\int Ldt = 300 \text{ fb}^{-1}$; $\int Ldt = 3000 \text{ fb}^{-1}$

ATLAS Preliminary (Simulation)

$$\sqrt{s}$$
 = 14 TeV: $\int Ldt = 300 \text{ fb}^{-1}$; $\int Ldt = 3000 \text{ fb}^{-1}$

